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Infectious diseases have continued to be a major global public health threat and effective methods are in 

critical need to quickly detect disease outbreaks. However, in practice, limited testing availability that leads to 

insufficient data poses challenges to effective analysis and real-time monitoring of infectious diseases, especially 

at the early stage of a novel infectious disease such as coronavirus disease 2019 (COVID-19). To tackle this 

challenge, this work proposes adaptive allocation strategies to intelligently allocate limited testing resources 

among communities, by integrating nonstationary Multi-Armed Bandit (MAB) techniques on top of a physics-

informed model which accounts for transmission dynamics and health disparity embedded in infectious diseases. 

A comprehensive simulation study based on the COVID-19 pandemic in North Central Florida are conducted to 

evaluate the proposed methodology, showing an overall robust and satisfactory performance. 
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1 Introduction 

Over the past several decades, infectious diseases have continued to be a major global public health 

threat, contributing significantly to the escalating costs of health care, and remaining one of the leading 

causes of death worldwide. For example, COVID-19, only the most impactful pandemic we have 

experienced, has a profound impact on global health and economic due to its rapid spread and evolution 

across the globe. To relieve the ongoing global burden of infectious diseases, a surge of interest in data 

science methods has been witnessed for early detection of outbreaks and support of timely 

implementation of public health interventions to contain the fast infectious spread through communities 

at the early stage [1]. For real-time surveillance of infectious diseases, mass testing is key to tracking 

and understanding the infection progression using diagnostic tests, which allows health care 

practitioners to appropriately and timely identify and isolate positive cases to contain the further spread 

of infectious diseases. Amid the fast worldwide spread of these infectious diseases, however, limited 

testing availability that leads to insufficient testing data poses significant challenges across the globe in 

effective analysis and monitoring of a novel infectious disease such as COVID-19, especially at the 
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early stage. There are two major practical restrictions of testing availability: (i) the limited collection of 

testing samples due to the demand of intensive labor; (ii) the severely restricted viral testing capability 

due to the scarcity of reactants, laboratory testing infrastructure, and trained technicians. Subject to 

limited testing availability, although pooled testing strategies have emerged as a useful means to 

increase testing capacity by testing a pooled sample with one diagnostic test, the resulted test reporting 

delays and lowered testing sensitivity interfere with the effective real-time monitoring [2].  

This work focuses on effectively allocating limited individual diagnostic tests for mass testing, the 

capacity of which yet falls far short of the need for containing infectious diseases during a surge. The 

resulted inadequate reliable testing data greatly limits the effective analysis of the infectious disease 

progression and appropriate health risk assessment in different communities, thus impeding the proper 

and prompt identification of disease outbreaks which will lead to delayed and erratic containment 

policies during the surveillance. To tackle these challenges, the primary contribution of this work is to 

maximally leverage all available physical information to develop data-driven adaptive testing resource 

allocation strategies which strategically and dynamically determine where and how many tests should 

be conducted at each time to collect high-quality testing data for quick detection of disease outbreaks 

in the context of limited testing availability. It should be noted that the proposed method can be flexibly 

applied to general pandemics due to its data-driven and physics-informed framework based on domain 

knowledge of general communicable infectious diseases.  

2 Methodology development 

In this section, we will present the proposed method subject to limited testing availability in detail. To 

highlight our main idea, several fundamental assumptions are made: (i) the diagnostic tests are allocated 

based on the geographical unit of census block group (BG). Denote the set of all BGs by 𝐺 , the 

population for BG 𝑖 by 𝐵𝑖, and the whole population by ℬ = ∑ 𝐵𝑖𝑖∈𝐺 ; (ii) the sampling within each BG 

is random; (iii) the total number of limited diagnostic tests is fixed over time, i.e., 𝑄 = ∑ 𝑞𝑖(𝑡)𝑖∈𝐺 , ∀𝑡. At 

each time 𝑡, according to the allocation strategy 𝒒(𝑡), the collected mass testing results are the number 

of positive cases 𝑛𝑖(𝑡) for each BG. With the use of the Bayesian framework, the infection risk 𝑟𝑖(𝑡) is 

assumed to follow a posterior beta distribution 𝜋𝑖(𝑡) = 𝐵𝑒𝑡𝑎(1/ℬ + ∑ 𝑛𝑖(𝜏)𝑡
𝜏=𝑡−𝑘0+1 , (1 − 1/ℬ) +
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∑ (𝑞𝑖(𝜏) − 𝑛𝑖(𝜏))𝑡
𝜏=𝑡−𝑘0+1 ), where 𝑘0 ∈ ℕ is the length of a sliding window incorporating all the latest 𝑘0-

day testing data for parameter update to ensure robust and effective assessment of infection risk.  

Since the disease is more likely to transmit in the BG with higher infection risk, we develop a 

physics-informed model incorporating multiple factors related to two physical natures of transmission 

dynamics and health disparity embedded in contagion of infectious diseases to project prospective 

infection risk, modeled by 𝑹(𝑡) = 𝒁(𝑡)𝒓(𝑡), where 𝒁(𝑡) = 𝑣0𝑻 + 𝑣1𝑲(𝑡) is a symmetric transmission 

matrix that accommodates two transmission patterns both within and between BGs with two scaling 

parameters 𝑣0, 𝑣1: (i) Through a power transformation function 𝑇𝑔(⋅), 𝑻 = diag (𝑇𝑔(𝑙𝑖)) accommodates 

the local transmission pattern within each BG itself, evaluated by the Local Contagion Risk Score 

(LCRS) 𝑙𝑖; (ii) Through a kernel function 𝐾ℎ𝑖
(⋅), 𝑲(𝑡) = [𝐾ℎ𝑖

(
1

𝑐𝑖,𝑗(𝑡)
)]

|𝐺|×|𝐺|

 accommodates the interaction 

transmission pattern among different BGs evaluated by the dynamic BG Connectedness Score (CS) 

𝑐𝑖𝑗(𝑡), ∀𝑖, 𝑗 ∈ 𝐺, as the mobility of citizens varies over time during the spread of the pandemic. On top 

of the physics-informed model, 𝑹(𝑡) further accounts for spatial and temporal transmission patterns of 

infectious diseases, thus implying the prospective infection risk for each BG. Apart from the infection 

risk, the severity risk of the disease, which reflects vulnerability difference to a severe illness for each 

community due to the health disparity, is in practice also a crucial aspect for assessing necessity of tests 

allocation and should thus be rigorously considered, especially when the disease mortality rate is high. 

It can be similarly evaluated through a power transformation function of the Disease Severity Risk 

Score (DSRS) 𝑤𝑖  by 𝐻𝑓(𝑤𝑖) = 𝑤𝑖
𝑓
. The parameters in the physics-informed model will be estimated 

based on early testing data through an optimization problem, and an iterative gradient descent algorithm 

is developed to solve it. Medical geographic analysis is conducted to screen out the sociodemographic 

and socioeconomic factors that are highly related to COVID infection for score evaluation (LCRS, CS, 

and DSRS; refer to Appendix for details). All factors are readily available at the BG level throughout 

the nation [3, 4], ensuring that the proposed method can be directly scaled to most states and regions. 

Next, we take both severity and infection risks into consideration to derive the BG risk level 𝑀𝑖(𝑡) =

𝐻𝑓(𝑤𝑖)𝑅𝑖(𝑡), which indicates the risk level of getting severely infected for BG 𝑖 at time 𝑡. High risk level 

implies high test allocation priority, and 𝑴(𝑡) is thus adopted as an informative measure to determine 
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the allocation. Two powerful MAB approaches, TS and UCB algorithms, are adapted to the proposed 

method on top of the physics-informed model due to their superior exploitation-exploration balance. 

Two types of informativity statistic 𝑉𝑖
(∙)(𝑡) implying the BG risk level are derived respectively: (i) Based 

on the TS algorithm, draw a random sample 𝑽(𝑇𝑆)(𝑡)~𝑁 (𝔼[𝑴(𝑡)], 𝑉𝑎𝑟(𝑴(𝑡))); and (ii) Based on the 

Bayesian UCB algorithm, 𝑽(𝑈𝐶𝐵)(𝑡) = 𝔼[𝑴(𝑡)] + 𝑒(𝑈𝐶𝐵)√𝑉𝑎𝑟(𝑴(𝑡)). 𝔼[𝑴(𝑡)] implying the risk levels 

facilitates exploitation on the vulnerable BGs while 𝑉𝑎𝑟(𝑴(𝑡))  implying the uncertainty of risks 

facilitates exploration on the potentially suspected BGs, combining which two a high value of 𝑉𝑖
(∙)(𝑡) 

specifies allocation priority. As a result, both the TS and UCB-based allocation strategies enables the 

collection of high-quality data for effective surveillance across all the BGs. In addition, we note that in 

practice the allocation also depends on the BG population, especially when the population difference 

among BGs is significant. A variable size adaptive allocation strategy is thus designed by assigning 𝑄 

proportional to both 𝑽(∙)(𝑡) and 𝑩, such that updating 𝑞𝑖
(∙)(𝑡 + 1) = min {

𝑉𝑖
(∙)(𝑡)𝐵𝑖

∑ 𝑉𝑗
(∙)(𝑡)𝑗 𝐵𝑗

𝑄, 𝐵𝑖} , ∀𝑖 ∈ 𝐺.  

Finally, based on the collected testing data, two real-time monitoring procedures are respectively 

developed using two local statistics 𝒓(𝑡) and 𝑹(𝑡) for quick detection of disease outbreaks across all the 

BGs, the development of which two procedures is similar. We first estimate the infection risk based on 

the latest testing data, and then identify the subset of suspected BGs with relatively high risks that may 

lead to a disease outbreak across all the BGs through hypothesis testing, denoted by 𝐷(∙)(𝑡), where the 

superscript represents 𝑟 - or 𝑅 -based procedures. To accelerate outbreak detection, the monitoring 

statistic 𝑆(∙)(𝑡) showing the overall risk across all the BGs at time 𝑡 is developed based on the diagnosed 

subset 𝐷(∙)(𝑡) . Subject to limited access to well-labeled in-control (IC) historical data in practice, 

especially for a new infectious disease such as COVID-19, we regard the testing data before time 𝑡 −

𝑘𝐼𝐶 as pseudo-IC data and derive the one-sided control limit 𝐾𝑡
(∙) accordingly through hypothesis testing. 

A disease outbreak across all the BGs will be declared when 𝑆(∙)(𝑡) > 𝐾𝑡
(∙) for 𝜏 successive time points. 

3 Simulation 

To thoroughly evaluate the performance of the proposed method, 200-day simulation data are generated 

under three transmission cases based on the COVID-19 pandemic in North Central Florida subject to 
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different kinds of social distancing adherence during the spread of the infectious disease: (i) Case I: few 

individuals adhere to social distancing; (ii) Case II: the social distancing adherence increases over time; 

(iii) Case III: the social distancing adherence fluctuates over time. The overall positive rate across all 

the BGs over time under each case are visualized by the blue lines in Figure 1(a). 

Based on the first 50-day simulation data, we first investigate the performance of parameter 

estimation of the physics-informed model through the proposed iterative algorithm, which is evaluated 

by the mean absolute errors (MAE) with the corresponding 95% confidence interval (CI). The results 

summarized in Table 1 with generally small MAEs indicate a satisfactory accuracy of the parameter 

estimation. Figure 1(a) further visualizes the specific progression of projected overall positive rates over 

time compared to the true ones, which not only shows that the calibrated physics-informed model based 

on estimated parameters is robust and reasonable but also 

demonstrates its practicality to accurately analyze and 

project transmission patterns of infectious diseases. 

On top of the calibrated physics-informed model, the allocation performance of the proposed TS 

and UCB algorithms is then evaluated and will be compared with three baseline algorithms: (i) the 

greedy algorithm focusing only on exploitation with 𝑉𝑖
(𝑔𝑟𝑒𝑒𝑑𝑦)

(𝑡) = 𝔼[𝑀𝑖(𝑡)]; (ii) the exploration (ER) 

algorithm focusing only on exploration with 𝑉𝑖
(𝐸𝑅)(𝑡) = 1; and (iii) the random sampling (RS) method 

which randomly allocates tests to the entire population. Based on 100 simulation runs, Figure 1(b) 

shows the 95% CIs of the total positive cases over time by different algorithms respectively, from which 

we observe that the TS, UCB and greedy algorithms outperform the ER and RS methods for all cases 

in identifying positive cases. This is expected since both ER and RS methods focus on exploring all the 

BGs without sufficient tests allocated to the most suspected BGs. The greedy algorithm achieves the 

best performance with more positive cases in Cases I and II, which is not surprising as there is only a 

few suspected BGs at relatively high risks and this scenario matches with its focus on exploiting top 

BGs, which is yet impractical in reality. When there are many suspected BGs that may change over 

time like Case III, the greedy algorithm lacking exploration will be misleading and result in degraded 

allocation performance. In contrast, the proposed TS and UCB algorithms still achieve a robust and 

Table 1. Performance of the parameter estimation. 

Case I II III 

MAE 
0.0005 

(0.0006) 

0.0004 

(0.0004) 

0.0004 

(0.0002) 

95% 

CI 

(0.0000, 

0.0012) 

(0.0000, 

0.0007) 

(0.0001, 

0.0007) 
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satisfactory allocation performance due to the superior exploration-exploitation balance, thus increasing 

the quality of the testing data collected for quick outbreak detection. 

  

 

Finally, the performance of the real-time monitoring procedures in the proposed framework is also 

evaluated through comparison with the three baseline allocation algorithms in terms of four metrics. 

The simulation results of which tabulated in Table 2, and the findings are generally consistent with 

those in the allocation performance. This is expected since better allocation performance enables the 

collection of high-quality testing data that will thus lead to better monitoring performance for quick 

outbreak detection. As observed, although the monitoring performances of the greedy, TS and UCB 

algorithms are comparable on detection delays in Case II, in Case III the proposed UCB algorithm 

performs the best while the performance of the greedy algorithm deteriorates considerably. It can be 

also seen that the 𝑟-based procedures generally outperform the 𝑅-based ones especially in Case II with 

relatively high sensitivity and high specificity. This is probably because the 𝑅-based ones estimate risks 

by further making projections incorporating the transmission dynamics, such that high observed risk in 

a BG is spatially balanced out with neighboring BGs. This mechanism leads to a longer detection delay 

but will result in less false alarms in 𝑅-based 

procedures, which can be observed from Case 

III. Generally, the proposed TS and UCB 

algorithms integrated with the 𝑟 -based 

monitoring procedures are overall preferred 

with reduced detection delay especially in 

cases of a small number of suspected BGs. 
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Figure 1. (a) Overall positive rates across all the BGs over time; (b) 95% CIs of total positive cases by different algorithms. 

Table 2. Monitoring performance through different monitoring procedures. 

 

   Sensitivity Specificity 
Detection 

delay 

Number 

of false 

alarms 

II 

TS 
r 0.65 (0.05) 0.75 (0.06) 0.61 (0.49) 0 

R 0.54 (0.07) 0.71 (0.06) 1.5 (1.57) 0 

UCB 
r 0.66 (0.05) 0.74 (0.06) 0.56 (0.50) 0 

R 0.53 (0.07) 0.71 (0.07) 1.26 (1.59) 0 

Greedy 
r 0.66 (0.05) 0.74 (0.06) 0.54 (0.50) 0 

R 0.04 (0.13) 0.98 (0.06) 133.73 (38.23) 0 

RS 
r 0.56 (0.04) 0.55 (0.06) 15.93 (17.64) 0 

R 0.40 (0.04) 0.75 (0.06) 22.45 (30.71) 0 

III 

TS 
r 0.98 (0.02) 0.18 (0.04) -86.38 (9.86) 100 

R 0.46 (0.07) 0.79 (0.04) 27.59 (21.66) 10 

UCB 
r 0.98 (0.02) 0.17 (0.04) -85.21 (9.83) 100 

R 0.51 (0.09) 0.76 (0.04) 19.58 (27.16) 15 

Greedy 
r 0.36 (0.06) 0.89 (0.03) 32.64 (21.47) 5 

R 0 (0) 1.00 (0.00) 50.14 (5.48) 0 

RS 
r 0.99 (0.01) 0.14 (0.03) -83.64 (8.03) 100 

R 0.36 (0.06) 0.89 (0.03) 38.45 (22.52) 7 
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4 Conclusions 

In this work, we propose data-driven adaptive testing resource allocation strategies on top of a physics-

informed model, which are integrated into a real-time monitoring framework which can effectively 

monitor infectious diseases in the context of limited testing availability. Despite inadequate testing data 

subject to limited tests, the proposed methodology is able to effectively assess health risks in different 

communities through the physics-informed model which accounts for different transmission patterns 

among communities by incorporating multiple factors related to transmission dynamics and health 

disparity that are innately embedded in contagion of infectious diseases. By further integrating the TS 

and UCB algorithms into the Bayesian framework, the proposed allocation strategies strike a superior 

exploration-exploitation balance between potentially suspected communities with high uncertainty of 

health risks and suspected communities at the highest risks, which adaptively and intelligently allocate 

the limited testing resources to collect high-quality testing data, thus enabling quick detection of disease 

outbreaks across all the communities as well as the diagnosis of most suspected communities that lead 

to the outbreak. A comprehensive simulation study is also conducted under three transmission cases to 

thoroughly evaluate the proposed methodology, from which the results show an overall robust and 

satisfactory performance of the proposed methodology in terms of the parameter estimation, the 

allocation strategies, and the real-time monitoring procedures. 

Appendix: Score evaluation in the physics-informed model 

In this appendix, we will demonstrate in detail how the three scores (LCRS, CS, and DSRS) in the 

physics-informed model in Section 2 are calculated, including what factors can be incorporated to 

evaluate the three scores to assess health risks in different communities. There are generally two steps 

for score evaluation: (i) collecting data and conducting medical geographic analysis to screen out the 

socioeconomic and sociodemographic factors that are highly related to the contagion of infectious 

diseases based on domain knowledge; (ii) providing and aggregating statistical descriptions of relevant 

factors for each type of scores followed by a prepossessing step to acquire final scores across all the 

communities used in the physics-informed model in the proposed method. It should be noted that such 

framework can be applied to different levels of community by incorporating factors at different levels. 



 8 

In this appendix, we focus on demonstrating what BG level factors can be incorporated to evaluate the 

scores and types of socioeconomic data for statistical descriptions, which are summarized in Table 3.  

 In particular, the LCRS for each BG measuring the neighborhood contagion risk within each BG 

will be calculated using housing and population structure data from American Community Survey [4], 

given that the dynamics of local transmission are strongly shaped by local indoor crowding, especially 

housing crowding [5, 6]. Principal component analysis is adopted to incorporate eight potential factors 

which correlate with contagion risk at the community level: population density, median income, 

percentage of households with no car, percentage of single parents among households with children, 

percentage of population contributing to service labor (trade, retail, construction and transportation), 

and housing density (crowding). The CS measuring how frequently two BGs interact will be created 

using adjacency, commuting patterns between core and periphery, and mobility scores (as a proxy for 

stay-at-home and social distancing adherence). We use a novel social distancing micro-data metric—

measuring the degree to which residents from individual neighborhoods have decreased their mobility, 

as a proxy for social distancing adherence [7]. This metric assumes a “home address” based on a 

cellphone night-time location, and includes several factors for each BG including the median number 

of minutes each cell phone user stayed at home. The DSRS measuring the probability of a severe disease 

within each BG will be calculated using data from the American Community Survey [4] and the 

Neighborhood Atlas [3]. Given that prior pandemics have disproportionally affected deprived 

communities and higher mortality is associated with lower socio-economic status [8], the DSRS will 

incorporate social determinants of health factors: socioeconomic status, area deprivation index, age 

structure, rurality, demographics, and prevalence of comorbidities (hypertension, diabetes, heart disease, 

kidney disease, obesity, advanced age, smoking, and chronic obstructive pulmonary disease).  

Table 3. Score Evaluation 

 Description Relevant Factors Data source 

LCRS 

Measuring the 

neighborhood 

contagion risk 

within each BG 

E.g., population density, median income, 

percentage of households with no car, percentage 

of single parents among households with 

children, percentage of population contributing to 

service labor (trade, retail, construction and 

transportation), and housing density (crowding) 

American Community 

Survey [4] 

CS 

Measuring how 

frequently two 

BGs interact 

E.g., adjacency, commuting patterns between 

core and periphery, and stay-at-home and social 

distancing adherence (mobility scores as a proxy) 

SafeGraph [7] 

DSRS 

Measuring the 

probability of a 

severe disease 

within each BG 

Social determinants of health factors, e.g., 

socioeconomic status, area deprivation index, age 

structure, rurality, demographics, and prevalence 

of comorbidities 

American Community 

Survey [4]; 

Neighborhood Atlas [3] 
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Throughout the simulation study in Section 3 specifically, the LCRS 𝑙𝑖 is evaluated by both the 

population density and community infection risk (the deprivation and percentage of population that 

works at a food service or tourism service job). The CS 𝑐𝑖𝑗 is evaluated by the reciprocal of the point 

distance, and the stay-at-home rate within each BG is incorporated as a proxy of mobility [7] to 

dynamically measure 𝑐𝑖𝑗(𝑡), given that the mobility patterns for each BG may vary over time due to 

quarantine measures that will affect the CS. The DSRS 𝑤𝑖 is measured by normalizing Area Derivation 

Index [3] that reflects different severity risks among BGs caused by the health disparities. Due to highly 

insufficient data of severe cases subject to inadequate diagnostic testing data, we set 𝑓 = 1 in 𝐻𝑓(⋅) to 

measure the severity risk in BG risk assessment for testing resource allocation and focus only on 

diagnostic testing data generation. 
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